Question 1:
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Question 2: 

Part 1:

(a) Let i and j be the row and column index of an element. Elements with i-j+n-1 = p define diagonal p, 0 <= p <= 2n-2  of a matrix. All elements on diagonal p of a Topelitz matrix have the same value. Therefore, there can be at most 2n-1 different values.

(b) The diagonal p element is stored in position p of a one-dimensional array.

Part 2:
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Question 3: 
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Question 4:

1. [bookmark: _gjdgxs]Following are the two ways in which shared pointers could be defined. 

A. shared_ptr<Dog> p(new Dog("Gunner”));
B. shared_ptr<Dog> p = make_shared<Dog>(“Tank”);

1a. Which one of the above two is a safe approach?  Give reasons either way? [2]

(B) is a safe approach.  
In (A) assigning the shared pointer “p” is a 2-step process (create Gunner, followed by create p). Assume a situation where new object Gunner is created successfully but the shared pointer “p” could not be created because of memory allocation failure. In such situations, Dog Gunner is not being managed by shared pointer “p”. Therefore, Gunner will not be deleted and its memory will be leaked.

1b. Which one of the above two is a fast approach? Give reasons either way? [2]

(B) is a faster approach. 
In (A) assigning the shared pointer “p” is a 2-step process, whereas in (B) it is done in a single step. 

2. Consider the following code snippet

1  void f(unique_ptr<Dog> p) {
2        p->bark();
3  }
4  void test() {
5        unique_ptr<Dog> pD(new Dog(“Gunner”));
6        f(move(pD));
7  }
8  int main () {
9        test();
10 }

In which line  ‘Gunner” is destroyed?                     [4]

Line 6

3. What is cyclic reference in terms of memory pointers in C++? [2]


Shared pointers provide a shared ownership of an object and when shared pointers of that object go out of scope, the object will be deleted automatically. If a shared pointer does not go out of scope, it will not be deleted. This is what happens in cyclic-reference where two shared pointers refer to each other and none of them go out of scope and the objects to which the shared pointers were pointing will not be deleted, leading to memory leaks.
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(@) f(n) =Q(g(n)) and f(n) = o(g(n)) ~(note the little-0)

Solution: Never true: If f(n) = Q(g(n)) then there exists positive constant cq and
ng such that for all n > nq, cg(n) < f(n). Butif f(n) = o(g(n)), then for any
positive constant ¢, there exists n,(c) such that for all n > n,(c), f(n) < cg(n). If
f(n) = Q(g(n)) and f(n) = o(g(n)), we would have that for n > max(ng,n,(cq))
it should be that f(n) < cog(n) < f(n) which cannot be.

(e) f(n) # O(g(n)) and g(n) # O(f(n))

Solution: Sometimes true: For f(n) = 1 and g(n) = |[n = sin(n)|| it is true, while
for any f(n) = O(g(n)),e.g. f(n) = g(n) =1,itis not true.
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‘The step-count table is given below.

Statement /e Frequency Total Steps
Void d(int x[], int m) 0 o o
¢ 3 o 3
for (int i =0; i<n; i+=2) 1 ceil(n/2) +1  ceil(n/2) + 1
x[i] += 2; 1 ceil(n/2) ceil(n/2)

int i=1; 1 1 1
while (i <= n/2) 1 floor(n/2) + 1 floor(n/2) + 1

1 0 o 0
X[1] 4= x[i+1]; 1 £loor (n/2) £loor (n/2)

it 1 £loor (n/2) £loor (n/2)

3 3 o o

} 3 13 3
Total 2ceil(n/2) + 3floor(n/2) + 3
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Solution: Notice that by the definition of unimodal arrays, for each 1 < i < n either
Ali] < Ali +1] or Afi] > A[i + 1]. The main idea is to distinguish these two cases:
1. By the definition of unimodal arrays, if Afi] < A[i + 1], then the maximum
element of A[1..n] occurs in A[i + 1..n].
2. In a similar way, if A[i] > A[i + 1], then the maximum element of A[1..n] occurs
in A[L..7].
This leads to the following divide and conquer solution (note its resemblance to binary
search):
1 a,b—1n
2 whilea < b
3 do mid — |(a+0)/2]
4 if A[mid] < A[mid + 1]
5 then a «— mid + 1
6 if A[mid] > A[mid + 1]
7
8

then b «— mid
return Afa]
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The precondition is that we are given a unimodal array A[1..n]. The postcondition is
that A[a] is the maximum element of A[1..n]. For the loop we propose the invariant
“The maximum element of A[1..n]isin Afa..b] and a < b”.

When the loop completes, @ > b (since the loop condition failed) and a < b (by
the loop invariant). Therefore @ = b, and by the first part of the loop invariant the
maximum element of A[1..n] is equal to Ala].

We use induction to prove the correctness of the invariant. Initially,a = 1 and b = n,
so, the invariant trivially holds. Suppose that the invariant holds at the start of the loop.
Then, we know that the maximum element of A[1..n] is in A[a..b]. Notice that A[a..b]
is unimodal as well. If A[mid] < A[mid + 1], then the maximum element of Afa..b]
occurs in A[mid+1..b] by case 1. Hence, after a «<— mid+ 1 and b remains unchanged
in line 4, the maximum element is again in A[a..b]. The other case is symmetric.

To complete the proof, we need to show that the second part of the invariant a < b is
also true. At the start of the loop a < b. Therefore, a < |(a + b)/2] < b. This means
that a« < mid < b such that after line 4 or line 5 in which « and b get updated a < b
holds once more.

The divide and conquer approach leads to a running time of 7'(n) = T'(n/2)+0(1) =
O(lgn).
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@ f(n) =0(f(n)?)
Solution: Sometimes true: For f(n) = n it is true, while for f(n) = 1/n it is not
true. (The statement is always true for f(n) = (1), and hence for most functions

with which we will be working in this course, and in particular all time and space
complexity functions).

) f(n) +g(n) = © (max (f(n), g(n)))
Solution: Always true: max(f(n), g(n)) < f(n) + g(n) < 2max(f(n), g(n)).
(© f(n)+O(f(n) = O(f(n)
Solution: Always true: Consider f(n) + g(n) where g(n) = O(f(n)) and let ¢ be a

constant such that 0 < g(n) < cf(n) for large enough n. Then f(n) < f(n)+g(n) <
(1 + ¢) f(n) for large enough n.




