CS 293 Lab 2

31st July, 2017

Run Time of a Program

Asymptotic complexity
Memory access time
CPU speed

Function calls/ Recursion
Programming language
Parallelism

Asymptotic Complexity (Insertion Sort)

int main()

{
int a[1000], step = 10;
double clocksPerMillis = double(CLOCKS_PER_SEC) / 1000;
/I clock ticks per millisecond

cout << "The worst-case time, in milliseconds, are" << endl;
cout << "n \t Time" << endl;

// times for n = 0, 10, 20, ..., 100, 200, 300, ..., 1000
for (int n = 0; n <= 1000; n += step)
{
// initialize with worst-case data
for (int 4 = 0; 1 <€ n; i++)
afi] = n - i;

clock_t startTime = clock();
insertionSort(a, n);
double elapsedMillis = (clock() - startTime) / clocksPerMillis;

cout €< n << "\t' << elapsedMillis << endl;
if (n == 100) step = 100;

}

return 0;

Running Time

=
b=
S
=
=
=

100
200
300
400
500
600
700
80O
900
1000

chocoocc oo o

EEZEZEEEES |0
coocoooo oo o ol

=

Times are in milliseconds

Modified Program

int main()
{
int al1000], steap = 10;
double clecksPerMillis = doublae(CLDCKS_PER_SEC) / 1000;
/f clock ticke per millisecomd

cout << "The worst-case time, in milliseconds, are” << endl;
cout << *"n “tRepetitions “t Total Ticks “tTime per Sort"™ << andl;

// tines for m = 0, 10, 20, ..., 100, 200, 300, ..., 1000
for (int n = 0; n <= 1000; n += step)
{

/! get time for size o

long number(ffepatitions = O]

clock t startTime = clock(};

do

{
nunber(f Repetitiong++;

Modified Program

Af imitialize with worst-casa data
far (int 4 = 0; 1 € n; i4+)
alil] = o - i;

insartionSortfia, a):
} while (clock() = startTima < 1000);
/f rapeat until enough time bas slapsed

double elapsedMillis = (clock(} - startTime] / clocksPerMillia;

cout << O << '\’ << numberDfRepetitions << '\¢’ << elapsedMillis
<< '\t << glapsedMillis / ocunbarCfRepetlicions
<4 mndl ;

if (o == 100) step = 100
}

raturn 0;

Running Times (in ms)

n | Repetitions | Total Time | Time per Sort
0 HG05842 1000 0.00015
10 2461486 1000 000041
20 1020396 10600 0. 00098
30 585217 1000 0.00171
40 J84T720 10400 0.00260
5 262557 1000 0.00381
) 200216 10400 0.00499
70 150964 1000 0.00662
S 126457 10400 0.00791
M) DITTH 10d0) 000002
100 80252 1000 0.01246
200 20849 1000 004796
300 0527 100 0. 10497
400 5537 1000 (. 18060
500 3576 1000 0.27964
600 2466 10400 0.40552
T00 1870 10600 (.5347T6
800 1393 10040 (0.T17T88
G000 1156 1000 (0.86505
1000 918 10010 1.08932

Running Time Plot

tin)

0.8 -
Fd
J,-’
06
,"
04 - /, /
F}
02 4
.-"-...'.-.f
0" |
] 250 500 750 1000

Problem 1: Insertion Sort

Do the following steps for n = 10, 20, 30, 40, 50, 60,70, 80, 90, 100, 200, 300, 400,
500, 500, 600, 700, 800, 900, 1000.

1. Using appropriate permutation of numbers from 0 to n-1 (both inclusive), find the
best and worst case run time of insertion sort.

2. For average run time of insertion sort:
a. Sort the random permutation of the numbers 1 to n on each iteration of the while loop.
b. Set the while loop so that at least 20 random permutations are sorted.
c. Estimate the average sort time by dividing the elapsed time by the number of permutations sorted.

Create table entry for each value of n and its best, average and worst case run time.

Memory Access

.~ L1 Cache

L2 Cache

Main Memory

Matrix Multiplication

void fastSquareMatrixMultiply(int #+= a, int #*+* b, int #** c, int n)
{
for (int 4 = 0; 4 < m; 1++)
for {int j = 0; j < n; j++)
c[i1[j] = O;

for (int 4 = 0; 41 < m; i++)
for (imt j = 0; j < m; j++)
for (int k = 0; k < n; k++)
cl41[4] += a4l (k] = blk][j];

Running Times (in ms)

500
1000
2000

ijk order
2.6
26.5

844.6

ikj order
0.9
6.7

54.2

Program 2: Matrix Multiplication

Write a program for multiplying two matrices. Now change the order of the for
loops in the program. Compare the execution time of the two programs for the
given inputs. Repeat the same for matrix addition.

Pointers

Basics:

e Variables that store addresses
e \What we accomplish using reference parameters can also be done using
pointers.

e Example: int *i
o ‘I’ stores the address of an integer variable
o *i-To get the integer stored at address i
o intm;i=&m; --- & used to get the address corresponding to integer ‘m’

e this pointer and use of operator ->:

struct Example{
int a,b;
Example();
Example(int a, int b){
this—>a = a;

(xthis).b = b;

Dynamic Memory Allocation

e See reference 1 in problem statement for help

Two types of memory:

e Stack memory - Store all local and global variables defined in code.
Automatically destroyed when variable goes out of scope.

e Heap memory - Not managed automatically. Allocate and deallocate
yourself. Useful when size of memory not known while writing code (may be
user input).

new and delete

Example *xex1;

exl = Example;

exl->a = 5;

exl1;

Example *ex2;
ex2 = Example[5];
ex2[0]—a = 5:

Common Errors

e Dangling reference - Using memory that has already been deallocated

o Common when 2 pointers pointing to same location on heap and we execute delete on one of
them

e Memory Leak - No pointer to some allocated memory

Strategy : Each variable on the heap is pointed to by exactly one pointer at a time.
Before that pointer goes out of scope - use delete

Problem

e Implement a String class using pointers.

e The file String.h has been provided.

e For more details see lab2.txt

Thank You

