
CS 293 Lab 2
31st July, 2017

Run Time of a Program

● Asymptotic complexity
● Memory access time
● CPU speed
● Function calls/ Recursion
● Programming language
● Parallelism

Asymptotic Complexity (Insertion Sort)

Running Time

Modified Program

Modified Program

Running Times (in ms)

Running Time Plot

Problem 1: Insertion Sort
Do the following steps for n = 10, 20, 30, 40, 50, 60,70, 80, 90, 100, 200, 300, 400,
500, 500, 600, 700, 800, 900, 1000.

1. Using appropriate permutation of numbers from 0 to n-1 (both inclusive), find the
best and worst case run time of insertion sort.

2. For average run time of insertion sort:
a. Sort the random permutation of the numbers 1 to n on each iteration of the while loop.
b. Set the while loop so that at least 20 random permutations are sorted.
c. Estimate the average sort time by dividing the elapsed time by the number of permutations sorted.

Create table entry for each value of n and its best, average and worst case run time.

Memory Access

 ALU
Reg L1 Cache

L2 Cache
 Main Memory

Matrix Multiplication

Running Times (in ms)

n ijk order ikj order

500 2.6 0.9

1000 26.5 6.7

2000 844.6 54.2

Program 2: Matrix Multiplication
Write a program for multiplying two matrices. Now change the order of the for
loops in the program. Compare the execution time of the two programs for the
given inputs. Repeat the same for matrix addition.

Pointers
Basics:

● Variables that store addresses
● What we accomplish using reference parameters can also be done using

pointers.

● Example: int *i
○ ‘i’ stores the address of an integer variable
○ *i - To get the integer stored at address i
○ int m; i = &m; --- & used to get the address corresponding to integer ‘m’

● this pointer and use of operator ->:

Dynamic Memory Allocation
● See reference 1 in problem statement for help

Two types of memory:

● Stack memory - Store all local and global variables defined in code.
Automatically destroyed when variable goes out of scope.

● Heap memory - Not managed automatically. Allocate and deallocate
yourself. Useful when size of memory not known while writing code (may be
user input).

new and delete

Common Errors

● Dangling reference - Using memory that has already been deallocated
○ Common when 2 pointers pointing to same location on heap and we execute delete on one of

them

● Memory Leak - No pointer to some allocated memory

Strategy : Each variable on the heap is pointed to by exactly one pointer at a time.
Before that pointer goes out of scope - use delete

Problem

● Implement a String class using pointers.

● The file String.h has been provided.

● For more details see lab2.txt

Thank You

